C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Group Theory

Subject Code: 5SC02GRT1		Branch: M.Sc. (Mathematics)	
Semester: 2	Date: 29/04/2019	Time: 02:30 To 05:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Attempt the Following questions (07)Define: Sub Group. a. 1 Define: Cyclic group. b. 1 Define: Coset. 1 c. Define: Simple group. d. 1 Define: Normal sub group. 1 e. Let G = (Z, +). Give one normal sub group of G with justification. f. 2 (14)Attempt all questions State and prove necessary and sufficient condition for subgroup. a) 5 **b**) Define order of an element. Let G be a group. Prove that $o(a) = o(x^{-1}ax)$ for 5 $a, x \in G$. If *H* is a subgroup of a group *G* then prove that the set $x^{-1}Hx$ is a subgroup of 4 **c**) *G* for $x \in G$. OR Attempt all questions (14)d) Define: Quaternion group. Prove that it is group under multiplication. 5 e) Define: Congruence relation. Prove that the congruent relation is an equivalent 5

Q-3

O-2

Q-1

Q-2

C)	relation.	J
f)	Prove that any two right coset of a subgroup of a group are either disjoint or	4
	identical.	
	Attempt all questions	(14)
a)	State and prove Lagrange's theorem	5
b)	Let K is a subgroup and H is normal subgroup of a group G . Then prove that	5
	$K \cap H$ is normal subgroup of K.	
c)	Prove that the group of prime order is cyclic.	4

OR

Q-3	a)	Define: Center of a group. Prove that center of a group is normal subgroup of a	5	
		group.		
	b)	Let G be a group and H, K be two subgroup of G . Then prove that HK is a	5	
		subgroup of <i>G</i> if and only if $HK = KH$.		
	c)	Prove that a homomorphism $\phi: (G, \cdot) \to (G', *)$ is one one if and only if <i>Ker</i> $\phi = \{e\}$	4	
SECTION – II				
Q-4		Attempt the Following questions	(07)	
	a.	Define: Conjugate of element in group.	1	
	b.	Define: Partition of <i>n</i> .	2	
	c.	Find center of S_3 .	2 2 2	
	d.	Define: Cycle decomposition.	2	
Q-5		Attempt all questions	(14)	
×۲	a)	State and prove fundamental theorem of homomorphism.	7	
	b)	For a fixed element g of a given group G. If $i_g: G \to G$ by	5	
		$i_q(x) = gxg^{-1}, \forall x \in G$ then prove that set of all inner automorphism is		
		normal subgroup of set of all automorphism.		
	c)	Find order of (1,3) in $(Z_2, +_2) \times (Z_4, +_4)$. OR	2	
Q-5	a)	Suppose G is an internal direct product of normal subgroups $N_1, N_2,, N_n$ then	6	
		prove that		
		(i) $N_i \cap N_j = \{e\}, i \neq j$		
		(ii) If $a \in N_i$, $b \in N_j$ then prove that $ab = ba$.		
	b)	If G_1 and G_2 are groups then prove that sets $G_1 \times \{e_2\}, \{e_1\} \times G_2$ are normal subgroups of $G_1 \times G_2$. Also prove that $G_1 \times \{e_2\} \cong G_1$ and $\{e_1\} \times G_2 \cong G_2$.	5	
	c)	Prove that the order of the set of all even permutation in S_n is $\frac{n!}{2}$ for $n \ge 2$.	3	
0.6		Attempt all supstions	(14)	
Q-6	a)	Attempt all questions State and prove Cayley's theorem.	(14) 7	
	a) b)	If $o(G) = p^2$ for some prime p then prove that G is abelian.	5	
	c)	Define: Double coset.	2	
	,	OR		
Q-6		Attempt all Questions		
	a)	Let G be a finite group and p be a prime number such that $p^m o(G)$,	7	
	•	$p^{m+1} \nmid o(G)$ for some $m \ge 1$ then prove that G has a subgroup of order p^m .	_	
	b)	Let p be a prime number and G be a group of order p^n for some $n \in N$ then prove that $Z(G) \neq \{a\}$	5	
	c)	prove that $Z(G) \neq \{e\}$. Let <i>G</i> be a group. If $a \in Z$ then prove that $C(a) = \{a\}$.	2	
	0)	Let u be a group. If $u \in \mathcal{I}$ then prove that $U(u) = \{u\}$.	-	

